Was the New World colonized by the prehistoric people of Japan?

Source: “Mitochondrial DNA and the Peopling of the New World”, American Scientist

A 1994 study concluded that ancestral lineages of Ainu people migrated across Beringia carrying HTLV-I virus (subtype A) to the American continent in the Paleolithic era.

Phlylogenetic analysis of mitochondrial DNA and HLA type analysis suggest there is a relationship between Japanese and Paleo-Indians in South America (DRB1*0802 was found to be present in almost all Amerindians, Siberian Eskimos and Japanese Ainu  but specifically two Meso and South Amerindian DRB1 alleles – DRB1*0411 and DRB1*0417-  are also shared with Siberians and Asian Pacific coast populations (Ainu, Japanese and Taiwan) as well as Athabaskans and Eskimos (other First American inhabitants) with the exception of the Aleuts).

A 2000 American Scientist article suggested that the “highest frequencies of these four haplogroups occur in the Altai Mountain/Tuva/Lake Baikal region, implying that this general region gave rise to the founders of Native  American populations. Otherwise, haplogroup B is absent in the vast majority of native Siberian populations, haplogroup A occurs at very low frequencies outside of Chukotka, and haplogroups C and D are the predominant mtDNA lineages in northern Asia.

However, the presence of a certain control region mutation in haplogroups C and D may point to alternative source areas for ancestral Native Americans. This mutation appears in the majority of both haplogroup C and D mtDNAs in Native American populations, suggesting it is part of the original sequence motifs for both of them. Among all Asian and Siberian mtDNAs, however, this mutation only appears in haplogroup C mtDNAs from Mongolia and the Amur River region and in haplogroup D mtDNAs in the Japanese, Korean and Ainu. This distribution suggests that East Asia as well as southeast Siberia or Mongolia might be source areas or migration pathways for these haplogroups.”

Adachi N, and others in “Mitochondrial DNA analysis of Jomon skeletons from the Funadomari site, Hokkaido, and its implication for the origins of Native American“, Am J Phys Anthropol. 2009 Mar;138(3):255-65. doi: 10.1002/ajpa.20923) assigned D1a (along with M7a, N9b) to ancient DNA recovered from 16 Jomon skeletons excavated from Funadomari site, Hokkaido, Japan. The fact that Hokkaido Jomons shared haplogroup D1 with Native Americans validates the hypothesized genetic affinity of the Jomon people to Native Americans, providing direct evidence for the genetic relationships between these populations… It appears that the genetic study of ancient populations in northern part of Japan brings important information to the understanding of human migration in northeast Asia and America.

Some recent scholarship leaned towards South Siberia (between Altai mountains and the Amur valley) as the source of ancestral populations of the Americas. But a 2010 Russian study clarified that while mtDNA haplogroups C and D diversified in southern Siberia, the oldest lineages are found in eastern Asia. A 1996 American study on mtDNA concluded that the four New World founding haplogroups, were detected and likely originated in the two Mongolian populations of Khalkha and Daringaga:

“Based on the current distribution of mtDNA haplogroups, we propose that populations in east Central Asia represent the closest genetic link between the Old World and the New World. All four New World haplogroups  [A, B, C, D] have been detected in Mongolian, central Chinese and Tibetan populations that delineate the only region in Asia where all four haplogroups exist and no population lacking any one of the haplogroups occurs. Thus, the narrow strip of east Central Asia that extends from Mongolia to the Pacific coast may have served as the starting point for the human migration that led to colonization of the New World. Furthermore, presence of the four

New World haplogroups throughout the Americas, but a restricted distribution in Asia, suggests a single sampling of these haplotypes. The emerging mtDNA picture of genetic diversity in the Americas appears to support a single migration, perhaps sustained over a period of time, of modern humans that gave rise to all contemporary New World populations. This scenario still allows for the possibility of other ancient migrations whose populations did not survive or at least left no maternal, i e . , mtDNA, record of their occupation.”

The latest general consensus according to a 2010 study “The Initial Peopling of the Americas...” however, is that modern Native American populations ultimately trace their gene pool to (at least 15 maternal lineages of) Asian groups who colonized northeast Siberia, including parts of Beringia, prior to the last glacial period. Native American populations arose from different contributing pools of ancestral populations – pre-LGM haplotypes of Asian ancestry; ancestral population(s) preserved in refugial areas during the Last Glacial Maximum (LGM) – and other groups from Beringia or eastern Siberia expanded into North America in the millennia after the initial Paleo-Indian migrations.

Novel haplotypes and alleles arose in situ due to new mutation, eg. a temporally important differentiation stage in Beringia explains the predominance in Native Americans of private alleles and haplogroups such as the autosomal 9-repeat at microsatellite locus D9S1120, the Y chromosome haplogroup Q1a3a-M3, and the pan-American mtDNA haplogroups A2, B2, C1b, C1c, C1d, D1, and D4h3a.

Other groups from Beringia or eastern Siberia expanded into North America in the millennia after the initial Paleo-Indian migrations. So admixture with population groups newly arrived from regions located west of Beringia would have resulted in the entry of additional Asian lineages into North America. This explains the presence of certain mtDNA haplogroups such as A2a, A2b, D2a, D3, and X2a only in populations of northern North America. Other recent data show that some native groups from northern North America harbor stronger genetic similarities with some eastern Siberian groups than with Native American groups located more in the South.

However, the 2010 study concluded that the Asian-founding lineages C1d were later arrivals than the other Siberian founding lineages. The study put entry times for other Siberian haplogroups at 15–18 thousand years ago (kya), for the post-LGM arrival from Beringia with early Paleo-Indians as well as for haplogroup X2a, which is thought to have arrived through an ice-free corridor.

According to this study C1d was characterized by an expansion time of only 7.6–9.7 kya, and the 2010 Russian Derenko study supported this and clarified that “the C1 branch is represented by C1a subclade which is a sister clade of the Native American subclades C1b, C1c, and C1d, which are dated to 18.6±2.3 kya and most likely arose early – either in Beringia or at a very initial stage of the Paleoindian southward migration. The Asian C1a-branch derived likely from the same ancestral population as the three Native American subclades shows a relatively lower coalescence time varying from 2 to 8.5 kya (1.97±1.97 kya for synonymous clock rate and 8.57 (2.6; 14.75) kya for complete mtDNA clock rate), implying that its expansion from Beringia occurred long after the end of the LGM.

Following from the foregoing, the bulk of the evidence suggests that the New World was colonized by certain common lineages (C and D haplogroups) that were ancestral to both the people of Japan and the Americas, rather than directly out of Japan itself.

According to the Smithsonian Institution, “ancient skeletal remains show a range of physical attributes suggesting separate migrations of different populations of modern humans (Homo sapiens sapiens) from Asia. The handful of human skeletons dated over 8,000 years ago show some regional variation, but as a group their skulls differ markedly from the broad faces, prominent cheekbones, and round cranial vaults that characterize modern–day American Indians. These ancient specimens have long and narrow cranial vaults with short and relatively gracile faces. Two examples are the 9,400-year-old Spirit Cave Man from Nevada and the most recently discovered 8.900-year-old Kennewick Man found in Washington State in 1996. Physical anthropologists see a greater similarity in these crania to certain Old World populations such as Polynesians, Europeans, and the Ainu of Japan. Only one early specimen, Wizards Beach Man, a Nevada skeleton dated to 9,200 years ago, falls within the range of variability of contemporary American Indians, an exception that requires further scientific validation. Crania with American Indian morphology appears by at least 7,000 years ago.

The similarity of the ancient crania to Polynesians suggested that one early source of migrants to the Americas was Asian circumpacific populations.”

Notwithstanding the recent “out-of-Siberia” views and the traditional view of how the New World was colonized was via a land crossing, some scientists believe that prehistoric seafaring people from Japan (sometime between 20,000 and 13,000 years ago) might have been the first to reach the Americas by sea-hopping their way along the coastal belt bordered by kelp forests from Japan Alaska to Southern California. Read the  Japan Times article, Thursday, Aug. 16, 2007 below.

***

New World’s first dwellers Japanese?

LONDON (Kyodo) The first inhabitants of North and South America could have been fishermen from Japan who traveled there in small boats, according to research in the latest edition of New Scientist magazine.

The new work casts doubt on the traditional theory that the “first Americans” were hunters from Asia who traveled to the continent on foot via the Bering ice bridge in Alaska some 13,500 years ago.

Jon Erlandson, an archaeologist from the University of Oregon, believes the first people to arrive were probably fishermen who followed a near continuous belt of kelp forests in the coastal waters of the Pacific Rim, from Japan to Alaska and southern California.

His research, which will be published soon in another academic journal, is based on discoveries of ice-age sea voyages in Japan, a study of human DNA and investigations of prehistoric marine ecosystems.

“I think they were just moving along the coast and exploring. It was like a kelp highway,” Erlandson told the weekly science journal.

Coastal researchers who spoke to the magazine believe the seafarers could have arrived in the New World some time after 16,000 years ago when the massive glaciers started to retreat from the outer Northwest American coast.

The conventional theory is that hunters came to the North American continent, much of which was covered in ice, from Siberia, and made their way south through a relatively narrow passage in the ice.

However, since the 1950s there has been growing evidence that America might have been discovered by ancient ice-age seafarers.

This alternative view has been buoyed by indications that the coastline of Northwest America was not as inhospitable as previously thought during the late ice age and could have sustained seafaring communities.

And in the 1990s, evidence emerged of a community living on shellfish on an island off the Chilean coast around 14,850 years ago. There was also a study that suggested that the ice corridor, through which the earliest Americans are thought to have traveled, was blocked by ice until some 13,000 years ago, making it impassable.

Erlandson was intrigued by this growing evidence and decided to investigate further.

First, he found evidence indicating that inhabitants of Honshu set out across the North Pacific more than 20,000 years ago to Kozushima, an island in the Izu chain 50 km south of the present Tokyo, to collect a type of volcanic glass to make tools.

Erlandson believes they could have done this in boats made from animal skins.

And he believes it is perfectly possible for them to have journeyed northward from there to the Kuril Islands, then the Kamchatka Peninsula, and on to the island-studded shore of the Bering land bridge and beyond to the New World.

He told New Scientist it would have been a very tough trip in treacherous waters but “what was once imponderable now seems entirely conceivable and increasingly likely.”

Another researcher interviewed by the magazine said the earliest direct evidence of seafaring in the New World comes from California’s Channel Islands.

Experts have found the remains of one seafarer there that puts him at between 13,000 and 13,200 years old. Obviously, the experts are not sure from where the mariner originated, but it raises the possibility he could have come from Japan.

Other research shows that what is thought to be the oldest form of DNA ever recovered from the New World — around 10,300 years old — is common in type to that found in Japan and Tibet. And similar DNA has been found in American Indians all the way down the west coast of North and South America.

*****

Evidence for a diversified sea-based economy (i.e. not Clovis Culture) among North American inhabitants dating from 12,200 to 11,400 years ago is emerging from three sites on California’s Channel Islands.

Reporting in the March 4 issue of Science, 2011, a 15-member team led by University of Oregon and Smithsonian Institution scholars describes the discovery of scores of stemmed projectile points and crescents dating to that time period. The artifacts are associated with the remains of shellfish, seals, geese, cormorants and fish.

Funded primarily by grants from the National Science Foundation, the team also found thousands of artifacts made from chert, a flint-like rock used to make projectile points and other stone tools.

Some of the intact projectiles are so delicate that their only practical use would have been for hunting on the water, said Jon Erlandson, professor of anthropology and director of the Museum of Natural and Cultural History at the University of Oregon. He has been conducting research on the islands for more than 30 years.

“This is among the earliest evidence of seafaring and maritime adaptations in the Americas, and another extension of the diversity of Paleoindian economies,” Erlandson said. “The points we are finding are extraordinary, the workmanship amazing. They are ultra thin, serrated and have incredible barbs on them. It’s a very sophisticated chipped-stone technology.” He also noted that the stemmed points are much different than the iconic fluted points left throughout North America by Clovis and Folsom peoples who hunted big game on land.

The artifacts were recovered from three sites that date to the end of the Pleistocene epoch on Santa Rosa and San Miguel islands, which in those days were connected as one island off the California coast. Sea levels then were 50 to 60 meters (about 160-200 feet) below modern levels. Rising seas have since flooded the shorelines and coastal lowlands where early populations would have spent most of their time.

Erlandson and his colleagues have focused their search on upland features such as springs, caves, and chert outcrops that would have drawn early maritime peoples into the interior. Rising seas also may have submerged evidence of even older human habitation of the islands.
imageA three-view look at a chert crescent dating to ancient seafarers on San Miguel Island.

The newly released study focuses on the artifacts and animal remains recovered, but the implications for understanding the peopling of the Americas may run deeper.

The technologies involved suggest that these early islanders were not members of the land-based Clovis culture, Erlandson said. No fluted points have been found on the islands. Instead, the points and crescents are similar to artifacts found in the Great Basin and Columbia Plateau areas, including pre-Clovis levels at Paisley Caves in eastern Oregon that are being studied by another UO archaeologist, Dennis Jenkins.

Last year, Charlotte Beck and Tom Jones, archaeologists at New York’s Hamilton College who study sites in the Great Basin, argued that stemmed and Clovis point technologies were separate, with the stemmed points originating from Pacific Coast populations and not, as conventional wisdom holds, from the Clovis people who moved westward from the Great Plains. Erlandson and colleagues noted that the Channel Island points are also broadly similar to stemmed points found early sites around the Pacific Rim, from Japan to South America.

Six years ago, Erlandson proposed that Late Pleistocene sea-going people may have followed a “kelp highway” stretching from Japan to Kamchatka, along the south coast of Beringia and Alaska, then southward down the Northwest Coast to California. Kelp forests are rich in seals, sea otters, fish, seabirds, and shellfish such as abalones and sea urchins.

“The technology and seafaring implications of what we’ve found on the Channel Islands are magnificent,” said study co-author Torben C. Rick, curator of North American Archaeology at the Smithsonian Institution. “Some of the paleo-ecological and subsistence implications are also very important. These sites indicate very early and distinct coastal and island subsistence strategies, including harvest of red abalones and other shellfish and fish dependent on kelp forests, but also the exploitation of larger pinnipeds and waterfowl, including an extinct flightless duck.

“This combination of unique hunting technologies found with marine mammal and migratory waterfowl bones provides a very different picture of the Channel Islands than what we know today, and indicates very early and diverse maritime life ways and foraging practices,” Rick said. “What is so interesting is that not only do the data we have document some of the earliest marine mammal and bird exploitation in North America, but they show that very early on New World coastal peoples were hunting such animals and birds with sophisticated technologies that appear to have been refined for life in coastal and aquatic habitats.”

The stemmed points found on the Channel Islands range from tiny to large, probably indicating that they were used for hunting a variety of animals.

“We think the crescents were used as transverse projectile points, probably for hunting birds. Their broad stone tips, when attached to a dart shaft provided a stone age shotgun-approach to hunting birds in flight,” Erlandson said. “These are very distinctive artifacts, hundreds of which have been found on the Channel Islands over the years, but rarely in a stratified context, he added. Often considered to be between 8,000 and 10,000 years old in California, “we now have crescents between 11,000 and 12,000 years old, some of them associated with thousands of bird bones.”

The next challenge, Erlandson and Rick noted, is to find even older archaeological sites on the Channel Islands, which might prove that a coastal migration contributed to the initial peopling of the Americas, now thought to have occurred two to three millennia earlier.
From Eureka Alert

*****

Read Jon Turk’s “In the Wake of the Jomon” and “Close-up Anthropology” to get his recreated account of how ancient Jomon mariners might have made it to the American continent.

:::

Mitochondrial DNA analysis of Mongolian populations and implications for the origin of New World founders. Genetics. 1996 Apr;142(4):1321-34. by Kolman CJ et al. Abstract follows below:

High levels of mitochondrial DNA (mtDNA) diversity were determined for Mongolian populations, represented by the Mongol-speaking Khalkha and Dariganga. Although 103 samples were collected across Mongolia, low levels of genetic substructuring were detected, reflecting the nomadic lifestyle and relatively recent ethnic differentiation of Mongolian populations. mtDNA control region I sequence and seven additional mtDNA polymorphisms were assayed to allow extensive comparison with previous human population studies. Based on a comparative analysis, we propose that indigenous populations in east Central Asia represent the closest genetic link between Old and New World populations. Utilizing restriction/deletion polymorphisms, Mongolian populations were found to carry all four New World founding haplogroups as defined by WALLACE and coworkers. The ubiquitous presence of the four New World haplogroups in the Americas but narrow distribution across Asia weakens support for GREENBERG and coworkers’ theory of New World colonization via three independent migrations. The statistical and geographic scarcity of New World haplogroups in Asia makes it improbable that the same four haplotypes would be drawn from one geographic region three independent times. Instead, it is likely that founder effects manifest throughout Asia and the Americas are responsible for differences in mtDNA haplotype frequencies observed in these regions.

 

DNA and the Peopling of Siberia by Michael Hammer and Tatiana Karafet

Mitochondrial DNA and the Peopling of the New World American Scientist, May-June 2000 by Theodore G. Schurr

The Peopling of the Americas: A complex issue for Amerind, Na-Dene, Aleut, Eskimo first inhabitants

The Initial Peopling of the Americas: A growing number of mitochondrial genomes from Beringia June 29, 2010, doi:10.1101/gr.109231.110 Genome Res. 2010. 20:1174-1179

Who were the First Americans? Center for the Study of the First Americans

Origin and Post-Glacial Dispersal of Mitochondrial DNA Haplogroups C and D in Northern Asia Derenko M, Malyarchuk B, Grzybowski T, Denisova G, Rogalla U, et al. 2010 Origin and Post-Glacial Dispersal of Mitochondrial DNA Haplogroups C and D in Northern Asia. PLoS ONE 5(12): e15214. doi:10.1371/journal.pone.0015214

8 responses to “Was the New World colonized by the prehistoric people of Japan?

  1. Peace.
    I think we as people have been traveling our home, Earth, for thousands of generations, sharing our knowledge over the great internet of the mind.

  2. Read also: Patrick Huyghe’s ‘Columbus was last”
    Jorge Olvera “Algunas semejanzas lexicas entre el Zoque-Mixe y el antiguo Japones.” Mexico,2000, in Spanish).
    The works of anthropologists Betty Meggers (Smithsoni an I) and Alice Beck Kehow.
    The recent voyages by Kenichi Horie and of YASEIGO-3
    Ed

  3. I suggested in 1966 that most of the more advanced cultures in the ancient world (pre- 500ACE), including the Japanese, Chinese, Koreans in the East and Romans, Phoenecians, Norse people in the West, probably knew about the existence of the Americas and accepted it as a matter of course. The distances over the available nautical technologies made voyages entirely feasible, just not cost-effective.

    The lack of corroborating documentation from those times is probably due to a “journalistic” priority which relegated this knowledge to the unimportant (in the thinking of the ancients).

    Sadly, I never became an archaeologist (my passion as a young man) and got segued into other stuff.

  4. I keep wondering if there might not be a connection between the words Ainu and Inuit. This study redoubles my interest in the linguistic roots of both people.

    • The Inuits:
      It has recently been suggested that the Inuit are closer to East Asian Siberian peoples genetically, than to their Amerindians counterparts, and they are very Siberian in their genetic makeup. However in the North Arctic of North America was originally inhabited by the Dorest people who were of Amerindian origins, and the Inuits are thought to have invaded the area, and intermarried with the local Dorest peoples. (DNA tests debunk blond Inuit legend http://www.cbc.ca/news/story/2003/10/28/inuit_blond031028.html#ixzz0fKxLG06J) The Inuit, along with the Na-Dené, and Indigenous Alaskan populations exhibit haplogroup Q (Y-DNA); however, they are distinct from other indigenous Amerindians with various mtDNA and atDNA mutations. This suggests that the peoples who first settled the northern extremes of North America and Greenland derived from later waves of migrant populations than those who penetrated further south in the Americas. // Genetic testing of the Ainu people has shown them to belong mainly to Y-haplogroup D2. Y-DNA haplogroup D2 is found frequently throughout the Japanese Archipelago including Okinawa. The only places outside of Japan in which Y-haplogroup D is common are Tibet and the Andaman Islands in the Indian Ocean. According to genetic tests, the Ainu people belong mainly to Y-DNA haplogroup D2 (a haplogroup that is found uniquely in and frequently throughout Japan including Okinawa with its closest relations being Tibetans and Andaman Islanders in the Indian Ocean).
      In other tests of two out of a sample of sixteen – i.e. 12.5% of Ainu men were found to belong to Haplogroup C3, which is the most common Y-chromosome haplogroup among the indigenous populations of the Russian Far East and Mongolia. A separate test (a sample of four Ainu men) found that one in four Ainu men belonged to haplogroup C3. The presence of the C3 haplogroup is believed to reflect the genetic influence of the nomadic Nivkhs people of northern Sakhalin Island, with whom the Ainu have long-standing cultural interactions. However, while Y-chromosome haplogroup markers D and D4 and M7a (and M7a1) indicate that Ainu are related to other Japanese populations in the rest of Japan, the various mtDNA studies indicate that Ainu men took wives from a variety of locations throughout Central Asia, Siberia and the Russian Far East. Of note, is that although the Ainu of Japan have traditionally considered descendents of the Jomon or post-Jomon people (indicated by the D or D2 gene marker), they have been found to carry the Y-chromosome DNA haplogroup C3 showing a paternal lineage from North Asia including Sakhalin, while mitochondrial DNA gene marker (Y-haplogroup C-M217*) shows similar maternal inputs — they are gene characteristics also shared by the Nivkhi in northern Sakhalin, and Koryaks in the Kamchatka Peninsula. Hence, the Ainu can be said to be related to the Nivkhi and the Koryaks.
      Based on non-metric cranial traits studies, however, the Ainu people occupy an intermediate position between Jomon and Northeast Asians (the Okhotsk) on the one hand, and between and to a lesser extent the recent Hokkaido Ainu. The Ainu are also considered to occupy an intermediate position between Jomon and Northeast Asians on the one hand, and between Jomon and the Native Americans on the other.

      [In a study by Tajima et al. (2004), two out of a sample of sixteen (or 12.5%) Ainu men were found to belong to Haplogroup C3, which is the most common Y-chromosome haplogroup among the indigenous populations of the Russian Far East and Mongolia;[23] Hammer et al. (2006) tested another sample of four Ainu men and found that one of them belonged to haplogroup C3. / According to Tanaka et al. (2004), their mtDNA lineages mainly consist of haplogroup Y (11/51 = 21.6%), haplogroup M7a(xM7a1) (8/51 = 15.7%), haplogroup D (especially D4), and haplogroup G.]

      In short, the Inuits and Ainu probably have remote and distant connections to different early Siberian groups from the Russian Far East and East Asian continental tribes. What we do know is that all Indigenous Amerindians mtDNA can be traced back to five haplogroups types A, B, C, D and X (so the Ainu and AmeriIndians have the haplogroup D in common but the connection is extremely remote). Based on 2010 studies, it appears that both Ainu and AmeriIndians/Native American groups were originally of the earliest waves of Paleo-Eskimo cultures from Chukotka Russian Siberia and that those migrations are distinctly prior to that of the later Thule (proto-Inuit) and Inuit peoples (http://en.wikipedia.org/wiki/Paleo-Eskimo). Nevertheless, the relationships between the various Siberian and AmeriIndian peoples have yet to be clarified – and they will probably become clearer in the near future as more genetic and blood group testing/research is done. Finally, other studies on the 9-bp deletion marker between the genes suggest that that the Inuit peoples are closest to the Chukchi, Aleut, Yupik, Atapaskans, Inupiat, that these Alaskan and Siberian populations shared a common ancestor who lacked the deletion (see The Circumpolar Inuit).
      Source for this page.

      • Wow, seriously in depth reply, which I found fascinating, but I’m not actually sure it quite addressed my actual interest, which was in the linguistic connection more than the genetic one. Are the words Inuit and Ainu connected? I believe both words derive from a root word which means “person” or “people”, which could suggest a linguistic commonality; but then again a lot of cultures have considered themselves as a people, separate from those around them, which could easily give rise to such a term being adopted.

      • I have no idea about the linguistic roots of the various languages, but I imagine it would be valuable to study the languages of the tribes that have been found to be genetically least distant to the Inuit tribe, and to work from there. I think there has been a lot of anthropological work done on the common mythologies of the various tribes. It would be interesting to see in future some inter-disciplinary cross study of genetics-linguistics-cultural anthropology to track and tie together the origins of the targeted populations.

  5. The Native Americans who inhabited the Santa Barbara Channel Islands on a continuous basis are the Chumash Indians. They have always had a Maritime Culture. They also have D1 and D4h3a Mt DNA. Their Oral history has them on Santa Rosae, a d then spread out from the Island to the mainland. Dr. Jon Erlandson has the islands continuously inhabited by the Chumash Islands for 13,000 years. The Chumash also Speak a Language Isolate called Chumashan, they also built large Plank Boats up to 30 ft long. They are genetically distinct from all other California Indians with unique long established Haplotypes. They are a enigma among The California Natives. They were the first people meet the invading Europeans in their planked canoes, and when the Europeans landed on Santa Cruz Island they were meet by heavily bearded Men, and Named the Island, “Island of the Bearded Men”. I don’t really believe that they are related to the Japanese or Ainu, but that they are their own people.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s